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A nonlinear theory is presented for the resonance of long gravity waves trapped on an 
uneven bottom when a long packet of short swells is incident. By allowing the trapped 
wave to be comparable in amplitude to the incident swells, the transient evolution of 
trapped waves is studied from initial growth through maturity to final decay, for 
swell packets of finite duration. For a totally submerged ridge, it is found that, while 
the trapped waves are resonated by second-order periodic modulations of the swell 
envelope, energy transfer to short swells and nonlinear emission of long waves act as 
damping mechanisms to limit the amplification. Bottom friction is not qualitatively 
crucial and affects the results only quantitatively. For a closed beach, breaking of short 
swells is dealt with empirically but resonant modulation is still the primary factor in 
exciting surf beats. 

1. Introduction 
Trapped waves can occur on a sloping beach (Stokes 1846; Ursell 1952), along a 

coastline with abrupt depth changes (Longuet-Higgins 1967) or over a submarine 
ridge (Munk, Snodgrass & Carrier 1956; Buchwald 1969). According to the linearized 
theory, these waves may be excited by transient incident waves, or by direct atmo- 
spheric forcing (Greenspan 1956) but not by steady sinusoidal incident waves. Field 
measurements made by Munk (1949) and Tucker (1950) have shown that long-period 
oscillations exist on natural beaches in the period range of 1-5 min. In  particular the 
envelope of the long-period waves is found to resemble closely the swell envelope. For 
storms of c. 1-2 day duration the long wave height is roughly one-tenth of the swell 
amplitude. Munk attributed this correlation to nonlinear interaction between long 
and short waves and termed the phenomenon surf beat. Gallagher (1971) has given a 
theory in which groups of swells with a narrow frequency band generate long-period 
forcing at  the second order and hence resonate a long-period edge wave. In his theory, 
however, rather drastic simplifications were made with regard to  the shoaling swells. 
In  addition, bottom friction was needed to render the resonant amplitude finite. A 
related theory has been put forth by King & Smith (1978) who also neglected the 
breaking zone, and found bottom friction to be crucial in the initial stage of side-band 
instability. In these theories the long waves are of second order in swell slope. 

As demonstrated by Guza & Bowen (1976) and Minzoni & Whitham (1977), edge 
waves may also be excited by a nonlinear subharmonic mechanism. Since the most 
energetic swells have the period range of 8 - 15 s, edge waves so excited can only have 
twice the period of 16 - 305, far below that of the surf beats. This mechanism is 
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therefore of greater relevance to small-scale motion and to the formation of small 
beach cusps. Of interest in their theory is that, instead of friction, damping due to 
nonlinear radiation of second harmonic waves plays an important role in the resonance 
process. 

In  this paper we re-examine the mechanism of nonlinear resonance by slowly 
modulated swells. In order to avoid empirical uncertainties, an inviscid theory is fir& 
worked out for the excitation of long wave trapped on a submarine ridge of small slope. 
The incident short swells pass over the ridge without significant reflection or breaking. 
In  contrast to earlier theories, we allow the long wave to grow to magnitudes com- 
parable to the incident swells. It is found that the nonlinear radiation of second 
harmonics of long waves produces a damping effect which renders the resonant growth 
finite. We also find that the interaction of short and long waves transfers energy from 
the latter to the former. The effect of bottom friction is added later merely as a correc- 
tion which is seen to enhance damping but does not play a critical role. 

The same analysis is then modified for surf beats on a beach. Since the short swells 
break in the surf zone where potential theory is no longer valid, empirical relations 
customary in long-shore current theory are invoked. On the other hand, the long 
waves are assumed to be only indirectly affected by the breaking swells through 
nonlinear interaction. It is then found that the breaking waves in the surf zone 
transfer energy from swells to the long waves, causing instability. However, sample 
calculations indicate that the unstable growth rate is weak and can be easily overcome 
by radiation and even more easily by bottom friction, so that resonant forcing is still 
the most important cause for surf beats. 

In  contrast to the sub-harmonic theory of Minzoni & Whitham (1977) and RocklifT 
(1978) where two time scales exist, our theory involves four time scales and two space 
scales. Furthermore, in order for the trapped wave to be in the 1-6 min range, the 
bottom slope cannot be much milder than the swell steepness. Consequently, the 
required WKB analysis? is very lengthy here. Moreover, to determine the eigenmode 
for a smooth submerged ridge, a numerical technique is needed. While the essential 
steps of our analysis are described, most of the manipulations are omitted for brevity. 

2. General plan of solution 
In  terms of the velocity potential @ and the free surface displacement f, the govern- 

ing equations are 

($+$+&) a, = 0, - h  < z < f, 

t The method haa been used before by Chu t Mei (1970) for Stokes waves on a not-so-mild 
beach. 
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Let e be the characteristic slope of the sea bottom, and e-l times the swell wavelength 
be the characteristic length of both the trapped long wave and the swell envelope. 
Hence E is the measure of slow modulation. Since i t  is well known that the most 
physically interesting phenomena occur when the slow modulation of the leading- 
order terms is comparable to nonlinear terms, we assume the steepness of the short 
swells to be O(s) also. It is convenient to introduce the slow variables 

(2.5) 

In  particular, we shall confine our attention to periodic variations on the y1 scale 
only. Hence y, y,, y3, . . . are not expected to arise. The swell envelope is in general a 
function of y,, z,, x,, z,, ..., t,, t,, t,, .. .. On the other hand, since the trapped wave is 
expected to diminish exponentially for lxll 1, there is no need to allow its amplitude 
to depend on x,, x,, .. ., as long as attention is confined to the region of x, = O( 1). To 
have some quantitative idea, we let the bottom slope be 6 = 0.05 and the incident 
swells have the period 2 ~ / 0  = 10 s. Then t ,  = O(3.3 min) which is a typical period of 
surf beats, t, = O( 1 hr) which is the typical period of storm surges, and t, = O(20 hrs) 
which is the typical duration of a storm. Tides, which have the time scale oft,, are 
ignored. 

Since the problem is weakly nonlinear almost everywhere, it is convenient to 
express the free surface conditions in terms of 0 alone and to expand about z = 0: 

I Y1 = CY2 

x, = &X, 2, = €4, x, = €32,  . . . , 
t ,  = Et, t, = €2t,  t, = €3t, .... 

@tt+g@E = 1- #@t@&11- [@S@tl. - [@y@& 

1 1 + [ -t4(v@)a+B@~@t@~+-@~@~~] 29 Y +0(@4) at = 0. (2.6) 

The following expansions will then be substituted : 
m n 

@ = n = O  x m = - n  x +nmeim$/\ with r = : - y  (2.7a) 

6 = en qnmeim$l" rlnm = rln. (2.7b) 

where * denotes complex conjugate. The functions $, and qnm, 6, depend on the 
slow variables and +,, further on z. We also denote 

m n 

n = l  m = - n  

It is important that the expansion begins with +oo at O(eo), which implies that the 
long-period trapped wave (qlo) can be as large as the swells. Now equation (2.2) 
becomes 

a t  z = -h(z,) .  
a@ ah a@ 
az ax1 ax 

-=-c-- 
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Furthermore, we let the first-order swells be normally incident and the frequency w 
be constant: 

k = (k(z,), O ) ,  w = constant, (2.10) 

Higher-order modulations will be incorporated in the amplitudes. Substituting (2.7) 
into (2.1), (2.6), and (2.9) and separating terms of different orders and harmonies, we 
obtain the governing conditions for each set of (n, m)  

(g -mzk2)  q5nm = Fnm, - h c z c 0, (2.11 a)  

- - m  w q5,,,= G,,, z = 0, (2.11 b)  (d 
(2.11 c) 

a 
-,q5nm = H,,, z = - h. 

The inhomogeneous terms F,,, G,,,, H,, are obtained in the manner of Chu & Mei 
(1970) but include many new terms because of q500 and the multiple scales; they will 
be given when needed. 

For the zeroth and first harmonics (m = 0 and 1)  the boundary-value problems 
(2.11) have non-trivial homogeneous solutions. Let 9h denote the corresponding 
homogeneous solution in each case ; the inhomogeneous problems at higher orders 
must be subjected to the following solvability constraint 

which will be referred to as VSC (for Vertical Solvability Condition). It may be shown 
that for the zeroth harmonic (m = 0) q5h = 1 and 

(2.13a) 

and Gno depends on potentials of order up to n - 2 in a more complex manner. Note 
that the summations disappear for n = 1 and 2. Equation (2.12) may then be reduced 
to 

1 0 V l . j o  V19n-2,0dz = - ;Gno+S ~ , , d ~ + 8 ~ , ,  V, = 
- h  - h  

where pno and fino are the summation terms in (2.13a, b) respectively. Thus the 
solvability of #no imposes a constraint on #n-z,O. For the first harmonic (m = l ) ,  
q5h = cosh k(z+ h); H,,, Fnl and Gnl depend on potentials of order up to n- 1. Equa- 
tion (2.12) then becomes 

1 
- h  h H,, +So F,, cosh k(z + h)  dz = - cosh khGnl, (2.15) 

which imposes a constraint on q5n-l,l. Subsequent details are rather tedious, and it is 
useful to sketch first the key steps to be followed. 
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At O(Eo), $w is seen to depend on the slow horizontal co-ordinates and time 
( x l , y l ,  t, ,  . . .), and hence represents long waves. At O(s), $,, corresponds to the short 
swell with unknown amplitude A(x, ,  y,, t,, .. .). At O(s2), vertical solvability of 
$zo gives a homogeneous long-wave equation for $,,,, which can be solved as a free 
trapped wave of unknown amplitude D(t, ,  t,, ...). Application of VSC (2.15) to $,, 
determines A in terms of its boundary value at 2,- -00, i.e. beyond the range of 
the trapped waves. #,, may now be solved with a new homogeneous solution of 
unknown amplitude B which includes the modulational disturbance that forces 
resonance. Similar application of VSC (2.15) to $31 determines B in terms of its known 
value at  X,N -m. On the other hand VSC (2.14) applied to yields for #,, an in- 
homogeneous long-wave equation which has $w as its homogeneous solution. Thus a 
horizontal solvability condition (HSC) exists which gives a constraint for the ampli- 
tude of $,,,,, i.e. D with regard to t,. The constraint turns out to be trivial. Finally, 
similar application of VSC (2.14) to &, followed by imposing HSC to the resulting 
long-wave equation for $,o, yields the evolution equation for D with respect to t ,  
which may be solved for given initial data and the boundary values A and B of the 
incident swells. It is the details of the fourth-order term $40 which require daunting 
algebra. 

3. Perturbation analysis of the interaction problem 
3.1. The long trapped wave $,,,, 

For the long-scaled motion (m = 0 )  we have 

Fw = F,, = 0, F,, = - (?+q&, 
ax: 4: 

ah %o H ,  = H,, = 0, H, = --- axl ax, - 

(3 . la)  

(3.1 b )  

( 3 . 1 ~ )  

Consequently $,,,, and $lo are independent of z but otherwise indeterminate functions 
of x,, yl, t , ,  t,, . . . . The potential $zo may be formally solved: 

dzo = #F2022--- az% + N ,  
9 at; 

where N is an indeterminate function of the slow variables. Applying VSC (2.14) to 
$zo we get the long-wave equation for $w 

-- 
at: gv, . (hV,$,) = 0, (3.3) 

which is homogeneous. From Bernoulli's equation, the corresponding free surface 
height is qlo, where 
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boo = -2R igD L,(z,) cos Kyle-intl + *, (3.5) 

where D(t,, t,, . . .) is the amplitude of ql0, and L, satisfies 

g(hLL)’+(Ra-ghK2) L, = 0. 

For a trapped wave we insist that 

L,+O as lxll - 00. 

For this to be true it is necessary that 

R2-ghK2 < 0 as lzll N 00. (3.8) 

In addition, L, must also be bounded everywhere. Thus (3.5)-(3.7) define an eigen- 
value problem where L, is the vth eigenfunction and K the eigenvalue, SZ being 
regarded as given. For a general h(z,) the eigenvalue problem can be solved numeric- 
ally. A convenient and numerical method employing finite elements will be described 
in appendix A. For the special case of a plane beach h = -xl, z1 < 0 the analytical 
solution is 

L, = eK%.Y,,( - 2Kx1) ( 3 . 9 ~ )  

with 9” = Laguerre polynomial, corresponding to edge waves,’ where 

R2 = gK(2v+ 1); v = 0,1,2,  .... (3.9b) 

In particular for the lowest mode v = 0 , 9 ,  = 1, and Q2 = gK. Although they have 
the physical dimensions of frequency and wavenumber, SZ and K are distorted because 
of the use of slow variables zl and t,. 

3.2. The short swells dll 
For n = 1, m = 1, Elll = H,, = C,, = 0, the solution is simply 

(3.10) 

where 
w2 = gk tanhq. (3.11) 

Thus A(%,, yl, t,, . . . ) is the amplitude of the incident swells. 
For (n = 2, m = 1) we have 

(3.12a) 

(3.12b) 
ah 

e =-h 

these may be substituted into VSC (2.15) to give 

(3 .12~)  

ah 0 

--ikdlll 8x1 e=-h  -I - h  dzcoshQ (3.13) 
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Multiplying (3.13) by gA*/2wcoshq, then adding the resulting equation to its own 
complex conjugate, we obtain the usual law of conservation of wave action 

(3.14) 

where C, is the group velocity of infinitesimal swells, 

(3.15) 
w 

Cu = - (1 + 2q/sinh 2q). 
2k 

Because of (2.10) and the fact that (3.14) is independent of the long waves &,, we 
may assume that IAI2 is independent of t , .  Consequently, (3.14) may be integrated 
to give the usual shoaling formula, 

IAI = (c;/c,)a IA"L (3.16) 

where the superscript ( )" refers to 2, - - 00, i.e. beyond the region of the trapped 
waves. In the absence of #oo, A" would be real. Now the presence of q&,, in Q,, means 
that the phase of A is affected by the long waves. Multiplying (3.13) by gA/2w coshq 
and using (3.15), we get 

-A,+-(C,A2) a a = -2i  k-- 8400 
at, axl [ ax, 2ucosh2q at, 

Let the phase of A be 8, i.e. 

it follows from (3.17) that 
A = IAleie; 

(3.17) 

(3.18) 

Assume 8 to be of the form 
- igD 
2Q 

e=- O(x,)  COB Kyle-inh + * ; (3.20) 

then 

(3.21) 

where primes denote derivatives with respect to x,. Equation (3.21) may be easily 
solved : 

with 

(3.22) 

Thus $11 is completely solved. 
Note that aa x l -  -00, i.e. outside the range of the trapped wave &,, 840 and 

A +A". Thus A" must be a prescribed function of (x2, 5, t,, t,, . . .) and specifies the 
envelope of the incident swells, to the first order. 



326 M .  A .  Foda and C .  C .  Mei 

3.3. The potential 
Having satisfied VSC (2.15), solution for $21 is assured. The formal solution is the 
same as that in Chu & Mei (1970): 

gA 
2w cosh q 

(a, Q cosh Q + a2Q sinhQ + u3 Q2 cosh Q) , (3.23) igB cosh Q - 
‘21 = - 20  cosh q - U‘ 1 

44, 4fi 
where 

u1 = h‘, a2 = [ (A/2wco~hq)2] ’ /2k(A/2wcoshq)~,  a3 = k‘/2k2, 

and A is given by (3.18). All except the first term on the right of (3.23) is the particular 
solution and will be denoted by $&. The amplitude B of the homogeneous solution 
$kl must now be determined to provide information needed for $40. For the resonance 
of the trapped wave, we expect that a t  the second order the incident swell envelope B 
contains a part which is in harmony with $oo. The associated term will be called the 
resonant modulation. The constraint for B is found by applying VSC (2.15) to $31, for 
which the following results are needed: 

8421 a’11] (3.24a) 
a 

F31= - [(”.”) $11+i-(k$21)+ik-+2ik- , 
ax; ayq 8x1 ax1 8x2 

(3.243) 

Q31 = {i2w[($21)t1 + ($ll)tpl - ($ll)tltl)z = 0 + ($21, $00) + ($00, $11) + ($10, $11) 

+ ($11, $11,$11)* (3-24c) 

The terms ( , ) represent symbolically nonlinear contributions of various couplings. 
After lengthy algebra, the result may be summarized as follows: 

where 631 depends on A and D, 

& = L4wg [ y ( 9 c o t h 4 q -  10coth2q+9) +ig k-- 
k2 ] ( tt 2 w c o s h a q ~ )  A 
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Invoking VSC (2.15) on the boundary-value problem for $31, we then have 

1 

9 
= -cOshqG3,. (3.25) 

Using the explicit expressions of $11 and $21, and multiplying (3.25) by gB/2w cosh q' 
we obtain after a good deal of algebra that 

aA s 1  + 2BCg axa = 2B [ - - - Q3,] (g +& (CgB2) + 2i coshq g ' 
(3.26) 

where 
a a 

ax1 
S = -- ax1 (ik$&+%) ax, - ,+Jo -h dxcoshQ - V ~ $ l l - i - ( k $ ~ l ) - i k - ( $ ~ l ) ] .  ax1 

ah 

(3.27) 

The explicit form of S is a slight modification of a similar term in Chu & Mei (1970) 
and is very lengthy. For convenience it is quoted in appendix B. Since part of (3.26) 
resembles (3.17) we try 

B = (CO,/Cg)#beie; b = by + ibi, (3.28) 

where 8 is given by (3.20) and (3.22) and where br and bi are respectively the real and 
imaginary parts of b. Substituting this into (3.26) and using (3.19), we get a linear 
equation for b : 

(3.29) 

Note that $21, which is from the second order, couples with $11 through quadratic 
terms in (2.6) to give zeroth harmonics with respect to the swell frequency w.  Further- 
more these zeroth harmonics have only derivatives with respect to slow variables ; 
hence they contribute at the fourth order to G40. Since such contributions must come 
from the combination 

9% $11 + $21 $8' 
only the part of $21 which is in phase with #11 matters. In view of the definition (3.28), 
only the real part by in the homogeneous solution $kl matters to Gd0. It is therefore 
only necessary to consider the real part of (3.29)' which may be rewritten as 

where 

3 smh 2q 
w = (A" I 4  ( 3 cJ ) (E a'[% (9' - 2q coth 2q + 1 + - 

-~(2q+coth2q+- 2 cosh 1 + 2 q ) ] - g [ 8 " + 2 ~  2q (.J!-)'] Gosh q 

[28zh2q+icoth2q] +E ( i + L )  @--a IR2 

2ka 2 sinh2q 2w 
x-  
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is1 
k 

+ iR@(a,q + ii2q tanh q + a, q2) + - q tanh q0' 

1 
2w 

+ - (a, q + B,q tanh q + a,q2) ( - 2kwL: - iRk2LJ 

k iw2R + - [a1( 1 + q tanh q)  + di,(tanh q + q )  + a3(2q + qe tanh q)]  (7 L,,) 
2w 

(3.31) 
and where 

Now, since A" is not a function of x1 or t,, we must insist for the boundedness of br that 

The solution for br must then be of the form 

bf = &(x,) c o ~ K y , e - ~ ~ ~ l +  *, 
.where & is complex. It is evident that 6 is governed by 

As the boundary condition for (3.34), we require that 
2, - - 00 is given by 

B-+b"cosKy,exp is1 -- [ (2; 4 ) ] 9  

(3.32) 

(3.33) 

(3.34) 

the amplitude B of & at 

2,- -co, (3.35) 

or 
& --f fbo exp (iQz,/C;) 

with bo(t2, t,, . . .) being the amplitude of the incident first harmonic in R. The solution 
of (3.34) subject to the boundary condition (3.35) is simply 

(3.36) 

Combining (3.36) with (3.33) and (3.28), we get 

where 

(3.373) 

and 

(3.37 c) 
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The part b, represents the second-order incident modulation superposed on the first- 
order amplitude A@,, x,, , .., t,, t,). The initial amplitude bo(t,, t,, .. .) at z,- - co 
should be prescribed. On the other hand, b, is the localized part of B. Being associated 
with the product DA", b, represents the second-order interaction of short swells and 
long waves. To summarize, the boundary value of the incident swell amplitude is 

A + ~ B ~ A " + ~ ~ " c o s K ~ , e ~ ~ ~ [ ~ x , - ~ t , ]  ( x , ~  -a), (3.38) 

where A" and b" are functions oft,, t,, .... 

3.4. The long-scale motion #,, 
Using (2.13a, b) and the fact that 

G,, = - (#lO)tltl - 2(&l0)t1t* - Wl #00)21tl - [(#oO)Z1 (#OO)t,lzl 

- [(#OO)yl(#OO)tllyl+ {- [k21#ll12+ 1(#11)z121tl 

1 
+ s [ W 2 # l l ( # t ) 2  + *It1 + Pkwl #1,1"~,~z= 0 ,  

we obtain from VSC (2.15) 

g2 
(#10)t1t,-9V1. @Vl#lO) = - 2(#00)t1t*+ 20 (~l~12)z,-a[~v1#oO)21t, 

- [(#O0)Zl (#oo)tlIZl - [(#0O)Vl ~#,)tll,,. (3.39) 

Clearly the right-hand side above contains first harmonics in 0; they are resonance- 
forcing (secular) and may be summarized in the form 

r.h.s. of (3.39) = RlOcos Kyle-i*ti + * + NST, (3.40) 

where NST stands for non-secular terms. The coefficient, R,, is simply 

(3.41) 

The potential #lo may also be expressed as 

#lo = rlo(xl) cos Ky,e-i*ti + * + NST, (3.42) 

where I?,, is the response to RIO, satisfying the inhomogeneous equation 

(3.43) 

By applying Green's formula to L, which is a homogeneous solution to (3.43) we get 
a horizontal solvability condition (HSC) for rl0, i.e. 

dx,RloL,, = 0. 
-03 

(3.44) 

A similar condition was used by Minzoni & Whitham (1977), and is implicit in Guza 
& Bowen (1976) in their study of edge-wave resonance by subharmonic excitation. 
Substituting (3.41) in (3.44), we get 

(3.46) 

thus D = D(t,,t,, ...). 
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To proceed further for the dependence of D on t,, it  is necessary to solve ex- 
plicitly. The right-hand side of (3.39) contains terms proportional to e*intl and 
efZintl, we therefore expect the same harmonics in the response, 

9 1 0  = &o + 912 + 98 + $!?*, (3.46) 

where &o is a homogeneous solution with amplitude E, 

&O = -5 igE L, cos Ky, e-intl + * , (3.47) 

while &), $8 and #,)* are particular solutions proportional to exp (iOQt) exp ( - 2iQt1) 
and exp (2iQt1) respectively. The term &) is governed by 

The solution is 

(3.48) 

(3.49) 

This is the usual mass-flux current well known in Stokes wave theory (Whitham 
1962). The forcing terms for #I"$ contain terms which are independent of y1 aa well as 
those proportional to COB 2Ky,. Thus we write 

(3.50) 

where primes denote derivatives with respect to x,. The boundary conditions are 

outgoing 
. as lz,l too. (3.52) 1 $ 0  J 

'kl 1 bounded everywhere and 
rt.2 

The vanishing of $2 at lxll WOO is dictated by (3.8). For general h(z,), $l and $2 may 
be solved by the numerical method described in appendix A. The solution for is 
now complete for the case of submerged ridge. 

To modify the preceding analysis for the closed plane beach we assume that the 
long wave does not break and replace the integration limits of (3.44) by ( - o0,O). 

Since R,, involves only the long waves (of. (3.41)), breaking does not yet have any 
direct influence on the HSC and (3.45) still holds. However, (3.48) and (3.49) are 
meaningful only in the shoaling zone and modifications are needed in the surf zone, 
as will be introduced later. Now $, and y92 can be solved analytically. In  this paper, 
only the lowest edge wave mode Lo = egxl will be considered. The solution for $1 is 
straightforward (Guza & Bowen 1976) 

- 2ins1K 
y91= C(z2(OO) - iz,(w)) J0(4( - K ~ J * )  - z2(4(-KxlP) 

x Jo(4( -KXl)*) + 2,(4( -Kzi)t)Yo(4( -KZ,)*)], (3.53U) 
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where 
0 

!Kzi 

0 

2,(4( - Kz,)f) = e2kJ0(4( - [)f) a'[, (3.533) 

(3.53c) 

This is an outgoing wave and hence is expected to yield radiation damping, as will be 
confirmed later. Substituting Lo = exp (Kz,), the right-hand side of (3.51 b )  vanishes ; 
hence, happily, 

z2(4(  - K X J * )  = IKZl e2'yo(4( - [)*I d ~ .  

+2 = 0. (3.54) 

3.6. Evolution equalion for the long trapped wave 
Defining 8, by Now we invoke VSC (2.15) for 

Q4, = -- a2+20 + Q4,, 
at: 

where Q40 is a lengthy result recorded in appendix C, we get by substituting (3.2) into 
(2.14) that 

By examining equation (C 1) it is seen that the right-hand side of (3.55) contains 
various harmonics in Q(0, 1, 2,3).  In particular the first harmonic may be collected 
in the form (3.40) with R,, replaced by R2,. After straightforward algebra, the function 
R2, is found to be 

(3.56 a )  
a 0  aE 

20 - 9 , -+- + ( ~ o + A o ~ ~ ) D + ~ ~ ~ D ~ 2 D + b " A " ~ ~ ,  - (at, at2) 
where 

\A12 0' 0 2  + [p (J (g2 + 2w2gh) + iQg2k 2+;; g2kbL (z) + SiQwkL, 
I4 

is2 3g2k2 we 
( 3 . 5 6 ~ )  

(3.56d) 

(3.56e) 
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Invoking HSC on (3.55), we get 
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R,, L, dxl = 0 for a ridge 

or J 

J R,, L, dx ,  = 0 for a beach. 

In  either case an evolution equation is obtained a t  last: 

where 

and 

c, = g s o s m  L;dx,. 
-co 

(3.57) 

(3.58) 

(3.59a) 

(3.59b) 

The upper limits of (3.59a, b) are co for a submerged ridge, and 0 for a beach. 
Physically, yo is derived from the terms in the bracket of (3.55) and represents the 
correction for linear dispersion of the long waves. Being purely imaginary, yo only 
affects the phase. y, is associated with theproductDand (A"),, andhencerepresents the 
third-order interaction of long and short waves. y, represents the nonlinear inter- 
action between the first and second harmonics of long waves; in particular it contains 
the effect of the radiated long waves $,. y, is a measure of resonant-forcing and arises 
from the second-order modulation b" of the incident swell envelope A". 

If the inputs A" and b" do not depend on t,, the resulting equation resembles that 
of Minzoni & Whitham (1977). In  their evolution equation the term corresponding to 
the interaction of the edge wave D and the swell A" is of the form y1 A"D, i.e. linear 
in A", and isderived at  thesolvability of the third-order problem. In addition, multiple 
scales exist there for time only but not for space. These factors imply a much less 
cumbersome algebra in reaching their evolution equation, especially if Airy's shallow- 
water theory is used from the start (Rockliff 1978). It may also be remarked that the 
analysis of King & Smith (1978) does not reach high enough order to include the 
interaction terms y1 and y, in (3.58). 

4. Trapped waves over a submarine ridge 
We first restrict our attention to the ridge without wave breaking. All the integrals 

involved in (3.59) may be evaluated numerically, yielding the coefficients yf,  i = 0, 
1 ,  2, 3, which are pure constants. Now define ( ) to be the time average on the scale t ,  
(i.e. storm surge time scale) 

(j') = lim - 
with 
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Thus (f) depends at most on t,, t,, . . , . Since #oo (cf. (3.5)) and #$, (cf. (3.47)) are of the 
same form, there is no loss of generality in letting D have all the dependence on t, 
and E depend on t, only. Upon taking the average of (3.58) we get 

(4.2) 
a 0  - + (70  + (Ao2) 71) D + y2lDl2D = - (A"b") 73. at, 

~ 

Writing 
A" = (A") + A(ta), ( 4 . 3 ~ )  

b" = (bo)+6(t2), 

(A",) = (A"),+ (A2) 

(A'b") = (A") (b")  + (As). 

it  is easily shown that 

and 

(4.3b) 

(4.3c) 

(4.3d) 

Subtraction of (4.2) from (3.58) gives 

- - 2{A") A71 D - [A@") + 8(A")] 73. (4.4) 

Thus by prescribing the envelope modulations and D at t, = 0, (4.2) may be integrated 
numerically for D(t,). Afterwards (4.4) is integrated by quadrature with respect to t, 
for E(t,) with zero initial value. 

We observe first that, if the modulation depends on t, but not t,, A = 6 = 0, then 
E vanishes. Otherwise E is always bounded because (A) = (8) = 0. Hence we shall 
focus attention to  D only from here on. On the other hand, even if (A") or (b") vanishes 
there is still resonant forcing as long as the t2-fluctuations of the first-order envelope 
and of the second-order modulation have non-zero correlation over t, scale (As) # 0. 
Thus storm surges with 1-5 min modulation can also excite trapped waves. 

Multiplying (4.2) by D* and adding the resulting equation to its own complex 
conjugate, we get 

aE 
at, 
-- 

~ + 2 ( ~ l " ~ ) R e y , l D 1 ~ + 2 R e y , l D I 4  at3 = -{A"b")2Re(y,D0); (4.5) 

use has been made of the fact that yo is imaginary. The above equation may be 
interpreted as the energy equation for the long waves. The right-hand side is the rate 
of working by resonant forcing. On the left-hand side, the second term gives the 
effect of damping if Rey, > 0 and instability if b y 1  < 0. Thus the damping or 
unstable growth rate rises with the magnitude and duration of (A"), or it5 
t,-fluctuation (A2). The third term from nonlinearity also gives rise to damping if 
Re y, > 0 which is to be verified. From ( 3 . 5 1 ~ )  it is seen that $, is purely imaginary 
and does not contribute to Re y, (see (3.56d)); hence this damping is entirely due to 
the radiation of second harmonic long waves corresponding to $,. If the initial value 
of 101, is small, the linear (second) term in (4.5) dominates so that energy transfer 
between long trapped waves and short swells overshadows radiation damping. 

If the incident swells and their modulations, and hence (A'b"), approach a steady 
state as t ,  + 00, 101 can also approach a finite limit which may be obtained as follows. 
Letting 
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in (4.2) we get 

The square of the absolute value of (4.7) is 
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~ D + q D 1 2 0  = v,. (4.7) 

ID12 is then found as the real positive root of the above cubic equation. Afterwards 
the phase of D defined by D = 101 exp ( i (BD + 0,))  may be found from 

The numerical examples are presented in dimensionless variables normalized by 
the length scale l/k" and the time scale l / w ,  or specifically 

(4.10) I (k, K )  = k"(E, a), R = OQ, 

(A", b", D )  = (do, 6", D)/k".  
(zl, h) = (Z1, A)/k",  

(t2, t 3 )  = ($2, t a ) / ~ ,  

A symmetric ridge of the following depth profile is assumed 

6 = K"[I - (1 - r )  exp (-pit:)] (4.11) 

where 8" is the dimensionless depth at  infinity, and rA" the minimum depth a t  Zl = 0. 
The coefficient p is set to be 

(4.12) 

so that the maximum value of bottom slope is always unity (8 in physical variables). 
A wave packet is incident from 3, - - CQ. 

First we choose the modal number Y ; then, for a given set of K", r ,  and a, the modal 
shape of the eigenfunction Lv(Zl) and the eigenvalue K are found by the numerical 
method of appendix A. The coefficients yo, y l ,  yz and y3 are then calculated by Simp- 
son's rule. Sample results for the lowest even mode v = 0 are listed in table 1. 

From table 1, it can be seen that Re y1 > 0 always; therefore, by numerical evi- 
dence the incident swells extract energy from the trapped long waves and the resonant 
modulation b" is necessary for exciting the latter. Also for the same input parameters 
the cubic equation (4.8) has only one real solution, hence only one steady state. 

In  figure 1 we show the approach to a steady state by letting B" = A, be a constant 
and 6" be a step function: 6" = AoH(t3). The initial value of is zero. The results for 
several values of A. show a rapid rise followed by an oscillatory approach to the steady 
state. The final limits are not monotonic in A. and have been checked with the solution 
of (4.8). 

Figure 2 shows the response t o  transient inputs of duration 6. I n  the solid curve (1) 
both A" and 6" are limited in duration T according to 

p = e / 2 [ (  1 - r )  

B" = 6" = exp [ - (18/Tz)(f3- BT)']. 

For the solid curve ( 2 )  the resonant modulation 6" is short-lived as given above but 
the swells are persistent: 2" = 1. In  the former case only the weak radiation damping 
is in effect after the passing of the forcing. In  the latter case the trapped waves 
experiences an additional energy drain to the long-lived swells. In figure 3 similar 
results are presented by solid curves with the duration reduced to 2 .  The peak res- 
ponses are now much reduced and the attenuation is also weak because of the small 
amplitude. These results suggest that friction at the sea bottom should also be 
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FIGURE 1. Transient evolution of trapped waves due to step-function forcing A" = A, 
and 6' = A,H(t,). R = 2, Lo = 2 and r = 0.5. 

- 

FIGURE 2. Transient response of the trapped wave amplitude 1 DI, over a submerged ridge, due 
to a short-lived resonant modulation b" to the incident swells amplitude A". ----, 6" = 
exp[-0 .5( i3-  3)a]; -, ID[ without bottom friction; -.- , ID1 with bottom friction. Curve 1 
refers to the case A" = 6", i.e. the wave packet is also short-lived. Curve 2 to A" = 1.0 i.e. a 
long-lived wave packet. In all cams a = 1, Ti" = 1 and r = 0.3. 

included. By assuming a bottom stress linear in the local velocity we can add an 
empirical constant to the first bracket in the evolution equation (4.2). The rationale 
of this artifice is given in appendix D. Using some reasonable numbers the bottom 
friction damping time is estimated to be 0(1 day). With this, the computations 
corresponding to the earlier inputs were then repeated. The results shown by chain 
lines in figures 2 and 3 indicate a markedly faster attenuation of D, accompanied by 
a lowering of the peak as well as the shortening of the lag time between the peaks of 
input and output. 
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FIGURE 3. Same description as for figure 2, except that the resonant modulation 6" has shorter 
duration, 6" = exp [ - 4*0(t,- 1)1. Note that the scale for ID1 is to the right. 

5. Surf beats on a plane beach 
We shall assume that the long wave does not break and the short swells break 

completely upon crossing the breaker line. The effect of breaking on both will be 
assessed by invoking some empirical relations for the short swells. Let us denote the 
breaker line by x1 = Xlb < 0 determined by the empirical formula that 

(5.1) 

Strictly speaking the total amplitude and the instantaneous sea depth should be used 
in (5.1) and a nonlinear theory is needed. In view of the empirical uncertainties the 
simpler linear theory is used here. By combining (3.16) with (5.1) and assuming that 

1 2 d l / h  = 'ya = 0.7 - 1.2. 

kh g 1 at x1b we obtain 
-Zlb = ( $ - e k o A o )  8 , 

where ( )" corresponds to infinite depth relative to the swell length. Since the magni- 
tude [ A  I of the local amplitude does not depend on t, the breaker line does not oscillate 
with the trapped wave. The t,-oscillation of the trapped waves induces oscillations in 
the phase of A ,  implying that swells do not begin to break at  the same instants within 
a period 2n/Q though approximately at the same distance from shore. Note that i?lb 

is small because of e.  The use of linear theory is of course not legitimate but Komar & 
Gaughan (1972) found that (5.2) agrees with observations if y b  2~ 1.4. Here we shall 
ignore this discrepancy with (5.1) because of the smallness of Zlb. Within the surf zone 
it is usually assumed that the local breaking-wave amplitude and the local mean 
depth are also related by (5.1), where h should be replaced by h + q l O .  Ignoring qlo 
relative to h the amplitude A then diminishes linearly with depth or (-El), i.e. 

or 
A 

= ( - sxl) eie 

By matching the amplitudes a t  the breaker line, the coefficient s is found : 

(5.3) 
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in the breaking zone. Note from (3 .373)  that 
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Additional hypothesis is needed for the amplitude of the resonant modulation b, 

b, b" 
IAI -A" 
-- (5.5) 

in the shoaling zone ; we shall assume that the same relation holds in the surf zone, 
implying that 

b l =  ( -831) b", Z, < Z1,. (5.6) 

Moreover, we assume that all results in $ 3  still hold formally. However, referring 
to (3.59) the integrals in y1 and y3 involve swells and must be broken into two parts. 
In  the surf zone (5.3)-(5.6) are imposed. Outside the surf zone the potential theory is 
still used. The resulting y1 and y3 are functions oft,, t,, . . . through their dependence 
on the breaker line location f,, and hence on A". On the other hand the coefficients 
yo and y, involve only long waves and can be evaluated straightforwardly to yield 
constant values. Thus through y1 and y3 the long wave is indirectly affected by 
breaking. 

Again assuming that the amplitude of the second-order edge waves E depends on 
t, only, (3.58) may be averaged over t,, yielding 

Note that y1 and ys depend on t,  and t, ... only through A" but not through the 
resonant modulation b". Thus, in the special cme where A" does not depend on t,, one 
may remove the averaging brackets and replace b" by its average (b"). For simplicity 
only this special case is dealt with in the ensuing computations. All the integrals in yi, 
i = 0, 1 ,  2, 3, are evaluated numerically for the lowest edge wave mode v = 0. In  
figures 4 (a, b )  we show y1 as a function of sk"A" and Q. In  all cases Re y, < 0, implying 
instability, in contrast with the submarine ridge. Furthermore from the figure an 
empirical formula may be obtained 

Rey, = F(CI)/(&"A")* (5.8) 

with F(Q) listed in table 2. It can also be seen that for > 3 the surf zone prevails 
over the shoaling zone in contributing to the growth rate. Note also that as k"A" J. 0 
the term (F)2yl  J. 0 also. Because of instability it is in principle not necessary to 
have resonant modulation for the excitation of trapped waves if the initial value of 

is not zero. A sample result without resonant forcing is shown by the solid curve (2) 
in figure 6 for a Gaussian swell packet of duration 2. However, the growth rate is weak 
so that radiation damping prevents the small initial disturbance from getting large. 
To achieve a significant amplitude, the edge wave must be forced by resonant modula- 
tion. Calculated values of y3 are shown in figures 5 (a, b ) .  In figure 6, the solid curve (1) 
shows the response to a transient wave packet subject to a transient resonant modula- 
tion. Similar computations for a longer duration ( - 6) without bottom friction are 
shown in figure 7. Using the same empirical estimate as in $ 5  the effect of bottom 
friction is seen to overwhelm the instability growth from the start as shown by the 
chain lines in figure 6. Clearly instability alone cannot overcome friction. With 
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F I G ~ ~ E  4. (a) Re (PI) = Re (y l ) /wkoa v8. ek"A" for different values of a. -, total Re (7); 

_--- , contribution from surf zone. y b  = 0.7 (of. (5.1)). 
( b )  Im (PI) = Im (y l ) /wk0* vs. &"A" for different values of a. 

n 1 1.5 2.0 2.5 3.0 

P(n) -0.016 -0.105 - 0.328 - 0.683 - 1.365 

TABLE 2. Empirical coefficient P(n)  in equation (5.8). 

resonant forcing, the bottom friction reduces the height of and shifts the response 
peak towards the peak of the wave packet. These results are in order-of-magnitude 
accord with the observations of Munk and Tucker. 

Finally, if the first-order envelope A" approaches a steady state, then a steady 
response may be established by the equilibrium between instability and nonlinear 
radiation damping, after the forcing expires. The equilibrium limit is 

from (4.5). For v = 0, Re y 2  may be evaluated analytically by using (3.53), 

(5.9) 
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FIGURE 7. Same description as for figure 6 except that the incident wave hes a longer life: 
B" = exp [ -O.S(Z,- 3)*]. Only the resonant modulation case is shown here. The result with 
8' = 0 resembles that in figure 6. 

Combining (6.8) and (6.10) we have 

Since koAo = O(1) by normalization, we take 6 = 0.06 and use table 2 to get 
IDI/Ao z 1.4-0-24 for a z 1-3. In reality the variability in storms limits the 
practical relevance of the above result. 

6. Conclusions 
Long-standing waves trapped on a straight beach or over a submarine ridge can be 

resonated by normally incident swells with slow modulations in time and in the 
long-shore direction. In both topographies, nonlinear radiation damping by the 
emission of second harmonics of long waves limits the resonance amplitude. Non- 
linear interaction transfers energy from the long wave to the swells in the case of a 
ridge. This energy transfer lasts only as long as the life span of the wave packet. 
Bottom friction adds substantial damping, which reduces the resonant peak and 
expedites attenuation. On a closed plane beach, the breaking swells feed energy to the 
edge waves, at however a very weak rate which is easily overcome by bottom friction. 
Thus forcing by resonant modulation in the incident swells is still the most significant 
mechanism. Controlled experiments are needed. 

It is clear that the present analysis can be extended to progressive trapped waves. 
Furthermore, since a jet-like steady current can be a wave-guide for waves of certain 
lengths, it is in principle possible to modify the present analysis for the resonance of 
long waves trapped in the current by normally incident short swells. 
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Appendix A. A hybrid element method for long waves on a submerged 
ridge 

Equations (3.6), (3.51a) and (3.51b), for L,, +kl and +k2 respectively, have the 
general non-dimensional form 

(EA’)’ + hR = f(S,), - co < El < OC). (A 1) 

The boundary conditions a t  Zl - & XI are given by (3.52), where A is a function of 
3. To illustrate the numerical procedure for solving (A l), we consider the inhomo- 
geneous problem for the case of even E ,  h andf. Now only one half of the fluid domain 
5, > 0 needs to be considered. The function h is known beforehand. First introduce 
the vertical line 5, = 1 which divides the domain into two regions; (1) the region 
0 d 5, < 1 where the depth Z(5,) is variable, and (2) 5, > 1 ;  % = 

In the region of constant depth (outer region), the solution to (A 1) can easily be 
represented analytically. However, this formal solution can only satisfy the boundary 
condition (3.52a or b )  at Z,-m; and hence has one yet undetermined coefficient 

In  the region of variable depth, a one-dimensional finite-element discretization is 
constructed for equation (A 1) .  Furthermore, two matching conditions between the 
finite element and the analytical representations are required; they are 

is constant. 

(say, 4. 

an+ an- a t  E l = l ,  - azl az, 

where A+ = outer (analytical) representation and A- fmite-element representation. 
In addition the boundary condition a t  the axis of symmetry for the ridge is 

an- - = 0, XI = 0. 
ax1 

Similar to  Chen & Mei (1974), it is straightforward to show that the problem 
(A 1) - (A 3) is equivalent to the stationarity of the functional 

Note that the integral is over the finite length 1. Using the finite-element discretization, 
we can approximate the expression (A 4) in terms of nodalvaluesof A and the analytical 
solution coefficient (a), yielding the bilinear expression 

J = & x ~ [ A ] x - x ~ F ,  (A 5 )  
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where x is the vector of unknowns, [A] a symmetric matrix, and F ia the vector con- 
taining the values of (f) at the nodal points. The stationarity of J implies 

[A]x = F. (A 6) 

This set of algebraic linear equations can be solved by, for example, Gaussian elimina- 
tion, to  get the unknown vector x. 

For the homogeneous problem of L,, (cf. (3.6)), the quantity A = (tanh k'h") a2- zE2 
contains the eigenvalue for a given a. (In dimensional form A = (Q2-ghK2)/g.) 
The boundary condition a t  the top of the ridge is 

or x1 = 0. 
Li = 0 for v even, 

Lv = 0 for v odd, 

At x1 - & 00, L,, J. 0, the stationary function is given by (A 4) with f = 0. Upon dis- 
cretization, equation (A 6) holds with F = 0 and the elements of [A] containing the 
unknown iffor a fixed Q. Hence, the resulting set of homogeneous algebraic equations 
are solved for a given value of Q by trial and error for the eigenvalues x. Then the 
corresponding modal shapes are obtained from (A 6) after suitable normalization 
(e.g. Lv(Z, = 0) = 1 for v = even). 

Appendix B. Detailed expression of S 

Ql"2 

1 
smh 2q 

8 = -iwcoshqA ---- I+- [ sinh2q : ( sin22q) " 

smh + 2q2) 29 
- (coth 29 - -) - &$3 (2q - coth 2q + - 

- iP4 (2qcoth 2q- 1) + ( 2q2- 2q coth 2q+ 1 +- sinh 2q 

- Qls, [ (1 + 2q2) ~ 0 t h  2q- 2q-- sinh 2q 

(A/cosh q)' k' a, = h', a - - 
k(A/coshq)' 

The last term in S is new and does not appear in Chu & Mei (1970). 
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Appendix C. The secular forcing for the function $ao 
Lengthy but straightforward algebra leads to the following result: 

Most of the terms above contribute to the secular term of (3.55). The secular terms 
involving B must come from terms containing as underlined in (C 1). 

Appendix D. An estimate of bottom friction 
In  estimating bottom friction on the long trapped waves, we first ignore nonlinear 

effects and then add friction damping to nonlinear damping. From energy considera- 
tion of linear long-wave theory it is easily shown that 

where the integral is over the entire fluid domain and Tb the bottom stress. The left- 
hand side is simply ad/at, where d is the total energy in the wave. On the right-hand 
side, we introduce 
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where Uo and ho are constant characteristic velocity and depth respectively. Equation 
(D 2) may be regarded as an equivalent linearization of the usual formula 

where f is the empirical coefficient and Uo is just the amplitude of u. Substituting 
(D 2) into (D 1) and invoking equipartition, we get 

Since 8 oc 1 0 1 2  we have . .  
-- _-- 2fuo ID!. af3 3nwe3h0 

The dimensionless damping constant is then 

Estimating w = 2n/10 s-l, f = 0.01, ha = lOm, e = 0.05 and Vo = 0.1 m s-l, we get 
,u N 0.3 = O(1). Since (D 4) resembles the linear part of (D 2) we simply change 
yo + (Ao2)  y1 to yo + (Ao2) y1 + wp in (4.2). In  all the computations we have taken 
/I = 1. 
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